Bio
I am a fourth year Computer Science PhD candidate in Big Data and Social Computing (BDSC) Lab at University of Illinois Chicago. My advisor is Prof. Philip S. Yu. Before joining UIC, I received my bachelor degree from Beijing University of Posts and Telecommunications and Queen Mary University of London in 2021. I interned in AWS Security Analytics and AI Research, Amazon Payment Risk Team, Walmart Global Tech, and AWS Shanghai AI Lab DGL team. My research interests are Graph Mining, Anomaly Detection, and Generative Models. More information about me can be found in my Curriculum Vitae.
Selected Publications
- Data Augmentation for Supervised Graph Outlier Detection with Latent Diffusion Models.
Kay Liu, Hengrui Zhang, Ziqing Hu, Fangxin Wang, Philip S. Yu.
arXiv preprint. 2023.
[Paper][Code] - BOND: Benchmarking Unsupervised Outlier Node Detection on Static Attributed Graphs.
Kay Liu, Yingtong Dou, Yue Zhao et al.
NeurIPS. 2022.
[Paper][Code][Data][Slides] - PyGOD: A Python Library for Graph Outlier Detection.
Kay Liu, Yingtong Dou, Yue Zhao et al.
JMLR. 2024.
[Paper][Code] - Enhancing Fairness in Unsupervised Graph Anomaly Detection through Disentanglement.
Wenjing Chang, Kay Liu, Philip S. Yu, Jianjun Yu.
arXiv preprint. 2024.
[Paper][Code] - Multitask Active Learning for Graph Anomaly Detection.
Wenjing Chang, Kay Liu, Kaize Ding, Philip S. Yu, Jianjun Yu.
arXiv preprint. 2024.
[Paper][Code]
Invited Talk
- Graph Neural Network based Fraud Detection: from Research to Application at Wells Fargo
- Graph Neural Network based Anomaly Detection: from Research to Application at BUAA
- Graph Neural Network based Anomaly Detection: from Research to Application at Novartis
- Leveraging GNNs for Financial Fraud Detection: Practices and Challenges at KDD 2022
Code Contribution
- GODM: Data Augmentation for Supervised Graph Outlier Detection with Latent Diffusion Models
- PyGOD: a Python Library for Graph Outlier Detection (Anomaly Detection)
- Deep Graph Library: a Python Package for Deep Learning on Graphs
- DGFraud-TF2: a Deep Graph-based Toolbox for Fraud Detection in TensorFlow 2.0